- · 《决策与信息》栏目设置[09/01]
- · 《决策与信息》数据库收[09/01]
- · 《决策与信息》投稿方式[09/01]
- · 《决策与信息》征稿要求[09/01]
- · 《决策与信息》刊物宗旨[09/01]
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。
地质学论文_基于梯度提升决策树算法的岩性智能
作者:网站采编关键词:
摘要:文章摘要:岩性识别是油气勘探开发领域一项重要的基础工作。针对致密砂岩储层岩石成分复杂、岩性多样和岩性常规测井识别受限等问题,利用机器学习算法在数据分析上的强大功能,
文章摘要:岩性识别是油气勘探开发领域一项重要的基础工作。针对致密砂岩储层岩石成分复杂、岩性多样和岩性常规测井识别受限等问题,利用机器学习算法在数据分析上的强大功能,采用泛化能力出众的梯度提升决策树(GBDT)算法解决岩性识别中人力和物力耗费大的问题。以鄂尔多斯盆地三叠系延长组长7段致密砂岩储层为研究对象,通过敏感分析选取声波时差、自然伽马、电阻率、泥质含量、自然电位、有效孔隙度、含水饱和度和密度8种测井参数,构建基于GBDT算法的岩性识别模型,结合实际数据进行验证和应用效果分析。与朴素贝叶斯、随机森林、支持向量机和人工神经网络算法岩性识别相比,GBDT算法岩性识别准确率达到了92%,高精度的GBDT算法岩性识别模型为致密砂岩储层岩性精确识别提供了新的解决途径。
文章关键词:
论文分类号:TP181;P618.13
文章来源:《决策与信息》 网址: http://www.jcyxxzz.cn/qikandaodu/2022/0113/1548.html